Bernoulli-Zahl

Die Bernoulli-Zahlen oder Bernoullischen Zahlen, 1, ±12, 16, 0, −130, … sind eine Folge rationaler Zahlen, die in der Mathematik in verschiedenen Zusammenhängen auftreten: in den Entwicklungskoeffizienten trigonometrischer, hyperbolischer und anderer Funktionen, in der Euler-Maclaurin-Formel und in der Zahlentheorie in Zusammenhang mit der Riemannschen Zetafunktion. Die Benennung dieser Zahlen nach ihrem Entdecker Jakob I Bernoulli wurde von Abraham de Moivre eingeführt.

Definition

In der mathematischen Fachliteratur werden die Bernoulli-Zahlen als drei unterschiedliche Folgen definiert, die aber sehr eng zusammenhängen. Da ist einmal die ältere Notation (bis ins 20. Jahrhundert im Wesentlichen genutzt), die hier mit bezeichnet wird, und die beiden neueren Formen, die in diesem Artikel mit und bezeichnet und seit circa Mitte des 20. Jahrhunderts meistens benutzt werden. Eine genauere Verbreitung oder der historische Übergang der Konventionen lässt sich schwer objektivieren, da dies stark vom jeweiligen Mathematiker und dem Verbreitungsgebiet seiner Schriften abhing bzw. abhängt. Eine heutzutage gängige implizite Definition der Bernoulli-Zahlen ist, sie über die Koeffizienten folgender Taylorreihen entweder als

oder (durch Spiegelung an der y-Achse) als

bzw. früher als

einzuführen. Hierbei sind die Zahlen und die Koeffizienten der Reihenentwicklung bzw. die Glieder der Bernoulli-Zahlenfolge. Die Reihenentwicklungen konvergieren für alle x mit Ersetzt man durch , so erkennt man die Gültigkeit von , d. h., die beiden erstgenannten Definitionen unterscheiden sich lediglich für den Index 1, alle anderen bzw. mit ungeradem Index sind null. Zur sicheren Unterscheidung können die Glieder als die der ersten Art (mit ) und die als die der zweiten Art (mit ) bezeichnet werden.

Auf der zuletzt aufgeführten Reihe fußt die ältere Definition; bei dieser kommen nur Glieder mit Indizes vor, d. h. die Glieder mit Index 0 und 1 müssen separat betrachtet werden. Für die verbleibenden Koeffizienten mit geradem Index (genau diese sind nicht null) wählt man eine eigene Definition, so dass diese alle positiv sind. Daher gilt

Genau dies hatte auch Jakob I Bernoulli bei seiner Erstbestimmung gemacht und so die ältere Notation begründet, er hatte sie allerdings noch nicht durchnummeriert. Er entdeckte diese Zahlen durch die Betrachtung der Polynome, welche die Summe der Potenzen natürlicher Zahlen von 1 bis zu einem gegebenen mit kleinen ganzzahligen Exponenten beschreiben. Z. B.

Dies führt letztlich über die Faulhaberschen Formeln auf die Euler-Maclaurin-Formel, in der die Bernoulli-Zahlen eine zentrale Rolle spielen. Bewiesen hat er ihre allgemeinen Werte nicht, nur die der kleineren Koeffizienten korrekt errechnet – seine entsprechenden Aufzeichnungen wurden postum veröffentlicht.

Zahlenwerte

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bn 1 0 0 0 0 0 0 0 0 0

Die ersten Bernoulli-Zahlen , ≠ 0 lauten:

Zähler Nenner auf 6 Nach-
kommastellen
0 1 1 1,000000 0
1 ±1 2 ±0,500000 ±1 1
2 1 6 0,166666 1 1
4 −1 30 −0,033333 −1 2
6 1 42 0,023809 3 16
8 −1 30 −0,033333 −17 272
10 5 66 0,075757 155 7936
12 −691 2730 −0,253113 −2073 353792
14 7 6 1,166666 38227 22368256
16 −3617 510 −7,092156 −929569 1903757312
18 43867 798 54,971177 28820619 209865342976
20 −174611 330 −529,124242 −1109652905 29088885112832
22 854513 138 6192,123188 51943281731 4951498053124096
24 −236364091 2730 −86580,253113 −2905151042481 1015423886506852352

Die Zahlen bilden eine streng konvexe (ihre Differenzen wachsen) Folge. Die Nenner der sind stets ein Vielfaches von 6, denn es gilt
der Satz von Clausen und von-Staudt, auch Staudt-Clausen’scher Satz genannt:

Er ist benannt nach der unabhängigen Entdeckung von Thomas Clausen und Karl von Staudt 1840. Der Nenner der ist also das Produkt aller Primzahlen, für die gilt, dass den Index teilt. Unter Nutzung des kleinen Fermatschen Satzes folgt somit, dass der Faktor diese rationalen Zahlen in ganze Zahlen überführt.

Auch wenn die Folge der zunächst betragsmäßig relativ kleine Zahlenwerte annimmt, geht mit wachsendem doch schneller gegen Unendlich als jede Exponentialfunktion. So ist z. B.

und

Ihr asymptotisches Verhalten lässt sich mit

beschreiben, daher ist auch der Konvergenzradius der Taylorreihen, die oben zu ihrer Definition herangezogen wurden, gleich

Geschichte

Frühe Geschichte

Die Bernoulli-Zahlen haben ihren Ursprung in der Berechnung von Potenzsummen, einem Thema, für das sich die Mathematiker seit der Antike interessierten. Methoden, die Summe der ersten Quadratzahlen bzw. Kubikzahlen zu ermitteln, waren schon früh bekannt, es handelte sich aber nicht um Formeln im heutigen Sinn, sondern um verbale Beschreibungen der Verfahren. Zu den großen Mathematikern, die sich schon früh mit dem Problem befassten, gehörten Pythagoras (ca. 572 bis 497 v. Chr., Griechenland), Archimedes (287 bis 212 v. Chr., Italien), Aryabhata (476 bis etwa 550, Indien), Al-Karaji (gest. um 1020, Persien) und Ibn al-Haytham (965 bis 1039, Irak).

Während des späten 16. und des frühen 17. Jahrhunderts machten die Mathematiker bedeutende Fortschritte. In Europa spielten dabei Thomas Harriot (1560 bis 1621, England), Johannes Faulhaber (1580 bis 1635, Deutschland) und die Franzosen Pierre de Fermat (1607 bis 1665) und Blaise Pascal (1623 bis 1662) eine wichtige Rolle.

Thomas Harriot dürfte der erste gewesen sein, der Formeln für Potenzsummen in einer symbolischen Schreibweise bewies und aufschrieb, aber auch er berechnete nur Potenzsummen bis zum Exponenten 4. Johannes Faulhaber gab 1631 in seiner Academia Algebrae Formeln für Potenzsummen bis zum Exponenten 17 an, stellte aber ebenfalls keine allgemeine Formel auf.

Blaise Pascal bewies 1654 eine Rekursionsformel, die es erlaubte, die Potenzsumme mit dem Exponenten auf die Formeln für Potenzsummen mit den Exponenten bis zurückzuführen.

Der Schweizer Mathematiker Jakob I Bernoulli (1654 bis 1705) erkannte als erster die Existenz einer Zahlenfolge , mit der sich eine allgemeine Formel für Potenzsummen ausdrücken ließ.

Bernoullis Freude über diese Entdeckung wird aus seinem Kommentar deutlich. Er schrieb:

"Mit Hülfe der obigen Tafel habe ich innerhalb einer halben Viertelstunde gefunden, dass die 10ten Potenzen der ersten tausend Zahlen die Summe liefern:
91 409 924 241 424 243 424 241 924 242 500."

Das Ergebnis von Bernoulli wurde 1713 posthum in der Ars Conjectandi veröffentlicht. Unabhängig davon entdeckte auch der Japaner Seki Takakazu die Bernoulli-Zahlen. Sein Resultat wurde, ebenfalls posthum, im Jahre 1712 veröffentlicht, also ein Jahr früher. Jedoch präsentierte Seki seine Methode nicht als Formel, die auf einer Zahlenfolge basierte.

Bernoullis Formel für Potenzsummen ist bis heute eine nützliche und verallgemeinerbare Aussage. Die Koeffizienten in Bernoullis Formel werden nun Bernoulli-Zahlen genannt, nach einem Vorschlag von Abraham de Moivre.

Die von Bernoulli aufgestellte Formel wird zuweilen als Faulhabersche Formel bezeichnet, nach Johannes Faulhaber, der zwar etliche Potenzsummen berechnen konnte, aber nicht die allgemeine Gesetzmäßigkeit herausfand. Nach Donald E. Knuth wurde ein strenger Beweis erst 1834 von Carl Jacobi veröffentlicht. Knuth schließt in seiner ausführlichen Untersuchung:

Faulhaber entdeckte niemals die Bernoulli-Zahlen; d. h. er erkannte nie, dass eine einzelne Zahlenfolge eine einheitliche Gesetzmäßigkeit
für alle Potenzsummen liefern würde. Er erwähnte zum Beispiel nie die Tatsache, dass fast die Hälfte der Koeffizienten gleich null ist, nachdem er seine Formeln für von Polynomen in auf Polynome in umgestellt hatte.

Rekursionsformeln

Möchte man die Bernoulli-Zahlen der ersten Art beschreiben, also , so ergeben sich diese Bernoulli-Zahlen aus der Rekursionsformel mit

und dem Startwert . Für ungerade Indizes folgt daraus wieder . Diese Formel entstammt der impliziten Definition der Bernoulli-Zahlen erster Art, die bis Mitte des 20. Jahrhunderts auch die gebräuchlichste Definition war, da sie eine leicht zu merkende Gestalt hat:

die auch in der weniger verbreiteten Form geschrieben werden kann als

wobei in diesen Darstellungen Potenzen von als die entsprechend indizierten Bernoulli-Zahlen zu interpretieren sind. Für die Bernoulli-Zahlen der zweiten Art lässt sich analog sowohl

als auch

oder eleganter

schreiben und als induktive Definition der Bernoulli-Zahlen zweiter Art verwenden mit zu

mit dem Startwert oder für alle als

.

Implementation

Ein möglicher Algorithmus zur Berechnung der Bernoullizahlen in der Programmiersprache Julia nach den oben angegebenen Rekursionsformeln für vorgegebenen Wert ist:

 b=Array{Float64}(undef, n+1)  b[1]=1  b[2]=-0.5  for m=2:n  for k=0:m  for v=0:k  b[m+1]+=(-1)^v *binomial(k,v)*v^(m)/(k+1)  end  end  end  return b 

Reihen mit Bernoulli-Zahlen

Diese Zahlen treten beispielsweise in der Taylorreihe des Tangens, des Tangens hyperbolicus oder des Cosecans auf; im Allgemeinen, wenn eine Funktion eine geschlossene Darstellung hat, wo die Sinusfunktion (oder Sinus-hyperbolicus-Funktion) im Nenner steht – d. h. durch die Summe oder Differenz zweier e-Funktionen dividiert wird:

Hier zwei nicht konvergierende asymptotische Reihen, die der Trigamma-Funktion (der zweiten Ableitung des natürlichen Logarithmus der Gammafunktion)

und die des natürlichen Logarithmus der Gammafunktion

die als Logarithmus der Stirlingformel bekannt ist. Diese lässt sich einfach aus der asymptotischen Form der Euler-Maclaurin-Formel ableiten, die in ihrer symmetrischen Schreibweise

lautet – wobei hier der Ausdruck die -te Ableitung (speziell für das Integral) der Funktion ausgewertet an der Stelle bedeutet –, wenn man dort setzt, die untere Summationsgrenze zu wählt und die obere Summationsgrenze mit variabel hält. Dies ist eine der bekanntesten Anwendungen der Bernoulli-Zahlen und gilt für alle analytischen Funktionen , auch wenn diese asymptotische Entwicklung in den meisten Fällen nicht konvergiert.

Zusammenhang mit der Riemannschen Zeta-Funktion

Die folgenden Reihenentwicklungen liefern die (im oben genannten Sinne) „klassischen“ Bernoulli-Zahlen:

Für die „modernen“ Bernoulli-Zahlen gilt

wobei im Fall der neueren Definition für n=1 undefinierte Ausdrücke der Form entstehen, die aber gemäß der Regel von de L’Hospital wegen den Pol erster Ordnung der Riemannschen Zetafunktion bei 1 (bzw. in der letzten Darstellung den Term im Nenner) aufheben und somit korrekt den Wert liefern.

Für die Bernoulli-Zahlen zweiter Art gibt es noch die prägnante Darstellung

so dass die gesamte Theorie der Riemannschen Zetafunktion zur Charakterisierung der Bernoulli-Zahlen bereitsteht.

Beispielsweise geht aus der Produktdarstellung der Riemannschen Zeta-Funktion und obigen Reihenentwicklungen der Bernoulli-Zahlen die folgende Darstellung hervor:

.

Hierbei erstreckt sich das Produkt über alle Primzahlen (siehe auch Eulerprodukt der Riemannschen Zetafunktion).

Integraldarstellungen

Es gibt viele uneigentliche Integrale mit Summen oder Differenzen von zwei Exponentialfunktionen im Nenner des Integranden, deren Werte durch Bernoulli-Zahlen gegeben sind. Einige einfache Beispiele sind

aber auch

aus.

Bernoulli-Polynome

Für jedes ist das Bernoulli-Polynom eine Abbildung und durch folgende Rekursionsgleichungen vollständig charakterisiert: Für setzen wir

und für ergibt sich das -te Bernoulli-Polynom eindeutig durch die beiden Bedingungen

und

rekursiv aus dem vorherigen. Als Summe der Potenzen von geschrieben lautet der Ausdruck für das -te Polynom

wobei hier wieder die die Bernoulli-Zahlen erster Art bezeichnen. Diese Form folgt direkt aus der symbolischen Formel

worin man die Potenzen von als die entsprechende n-te Bernoulli-Zahl interpretiert. Die ersten Bernoulli-Polynome lauten

Diese Polynome sind symmetrisch um , genauer

Ihre konstanten Terme sind die Bernoulli-Zahlen erster Art, also

die Bernoulli-Zahlen zweiter Art erhält man aus

und schließlich gilt

in der Intervallmitte. Das k-te Bernoulli-Polynom hat für k > 5 weniger als k Nullstellen in ganz und für gerades n ≠ 0 zwei und für ungerades n ≠ 1 die drei Nullstellen im Intervall . Sei die Nullstellenmenge dieser Polynome. Dann ist

für alle n ≠ 5 und n ≠ 2 und es gilt

wobei die Funktion angewandt auf eine Menge deren Elementanzahl angibt.

Die Funktionswerte der Bernoulli-Polynome im Intervall [0,1] sind für geraden Index durch

und für ungeraden Index (aber nicht scharf) durch

beschränkt.

Ferner genügen sie der Gleichung

,

falls man sie auf ganz analytisch fortsetzt, und die Summe der Potenz der ersten natürlichen Zahlen lässt sich mit ihnen als

beschreiben. Die Indexverschiebung von zu auf der rechten Seite der Gleichung ist hier notwendig, da man historisch die Bernoulli-Poynome an den Bernoulli-Zahlen erster Art (und nicht zweiter Art) „fälschlicherweise“ festmachte und somit statt den Summanden in obigen Bernoulli-Poynomen erhält, was hier genau den Wert zu wenig ergibt (den letzten Term der Summe auf der linken Seite), und daher auf der rechten Seite dieser Index noch „eins weiter“ laufen muss.

Bernoulli-Zahlen in der algebraischen Zahlentheorie

Satz von Staudt:

Als Satz von Staudt-Clausen ist auch die Aussage

bekannt, die etwas stärker ist als der vorherige Satz von Clausen und von-Staudt zur Charakterisierung der Nenner. Die Folge der so bestimmten ganzen Zahlen für geradzahligen Index lautet .

Kummersche Kongruenz:

Eine ungerade Zahl heißt reguläre Primzahl, wenn sie keinen der Zähler der Bernoulli-Zahlen mit teilt. Kummer zeigte, dass diese Bedingung äquivalent dazu ist, dass nicht die Klassenzahl des p-ten Kreisteilungskörpers teilt. Er konnte so 1850 beweisen, dass der große Fermatsche Satz, nämlich hat für keine Lösungen in , für alle Exponenten gilt, die eine reguläre Primzahl sind. Damit war beispielsweise durch das Überprüfen der Bernoulli-Zahlen bis Index 94 der große Fermatsche Satz mit Ausnahme der Exponenten 37, 59, 67 und 74 für alle anderen Exponenten ≤ 100 bewiesen.

Tangentenzahlen und Anwendungen in der Kombinatorik

Betrachtet man die Eulerschen Zahlen und die Taylorentwicklung der Tangens-Funktion, so kann man die Tangenten-Zahlen implizit definieren zu

und für Index Null noch setzen. Man hat somit die Transformation

die aus den Bernoulli-Zahlen erster Art diese Folge ganzer Zahlen erzeugt:

Da die Vorzeichenwahl in der impliziten Definition völlig willkürlich ist, kann man genauso berechtigt mittels

die Tangentenzahlen definieren, mit der Konsequenz

und hat für alle Indizes

In jedem Fall sind mit Ausnahme von alle Zahlen mit geradem Index Null und die mit ungeradem Index haben alternierendes Vorzeichen.

Die Werte sind nun genau die Anzahl alternierender Permutationen einer elementigen Menge. Weitere Informationen zur direkten Bestimmung der Tangentenzahlen findet man im Artikel Eulersche Zahlen.

In der Kombinatorik lassen sich die Bernoulli-Zahlen zweiter Art auch durch die Stirling-Zahlen zweiter Art darstellen als

Die Werte werden auch als Worpitzky-Zahlen bezeichnet. Ein weiterer Zusammenhang ergibt sich über die erzeugende Potenzreihe der Stirling-Polynome mit wegen

mit den Stirling-Zahlen erster Art zu

die man so für negatives definieren könnte. Daher sind die Bernoulli-Zahlen zweiter Art auch die Werte der Stirling-Polynome bei Null

aufgrund der gleichen formalen Potenzreihe.

Algebraische Topologie

Hier im Artikel sind die Bernoulli-Zahlen zu Anfang willkürlich mittels erzeugender Potenzreihen definiert worden. Die formale Potenzreihe von tritt aber auch direkt bei der Bestimmung der Todd-Klasse eines Vektorbündels auf einem topologischen Raum auf:

wobei die die Kohomologieklassen von sind. Wenn endlich-dimensional ist, dann ist ein Polynom. Die Bernoulli-Zahlen zweiter Art „zählen“ hier also ganz natürlich gewisse topologische Objekte. Diese formale Potenzreihe schlägt sich genauso im L-Geschlecht bzw. Todd-Geschlecht der charakteristischen Potenzreihe einer orientierbaren Mannigfaltigkeit nieder.

Siehe auch

  • Eulersche Zahlen sind eng mit den Bernoulli-Zahlen verwandt.
  • Ada Lovelace legte einen Algorithmus zur maschinellen Berechnung der Bernoulli-Zahlen ca. 1845 vor.
  • Faulhabersche Formel

Literatur

  • Jakob Bernoulli: Ars conjectandi, opus posthumum. (Kunst des Vermutens, hinterlassenes Werk), Basileæ (Basel) 1713 (lateinisch).
  • Julius Worpitzky: Studien über die Bernoullischen und Eulerschen Zahlen. Crelles Journal 94, 1883, S. 203–232.
  • Senon I. Borewicz, Igor R. Šafarevič: Zahlentheorie. Birkhäuser Verlag Basel, 1966, Kap. 5, § 8, S. 408–414.
  • Jürgen Neukirch: Algebraische Zahlentheorie. Springer-Verlag, 1992.
  • Kenneth F. Ireland, Michael Rosen: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics, Bd. 84, Springer-Verlag, 2. Auflage 1990, Kap. 15, S. 228–248.
  • I. S. Gradshteyn, I. M. Ryzhik: Table of Integrals, Series and Products. Academic Press, 4. Aufl. 1980, ISBN 0-12-294760-6, Kap. 9.6.
  • Ulrich Warnecke: Zur Polynomdarstellung von für beliebiges In: Mathematische Semesterberichte. Band XXX / 1983, S. 106–114.

Quellen

  1. Otto Forster, Florian Lindemann: Analysis 1. 13. Auflage. Springer Spektrum, 2022, ISBN 978-3-658-40129-0, S. 414.
  2. J. C. Kluyver: Der Staudt-Clausen’sche Satz. Math. Ann. Bd. 53, (1900), S. 591–592.
  3. Donald E. Knuth: Johann Faulhaber and the Sums of Powers. In: Mathematics of Computation. 203. Auflage. Band 61. American Mathematical Society, 1993, S. 277–294, doi:10.2307/2152953, arxiv:math/9207222, JSTOR:2152953 (englisch).
  4. Jakob Bernoulli: Wahrscheinlichkeitsrechnung (Ars Conjectandi). 1713, S. 99 (archive.org).
  5. Helaine Selin (Hrsg.): Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer, 1997, ISBN 0-7923-4066-3 (englisch).
  6. Carl Gustav Jacob Jacobi: De usu legitimo formulae summatoriae Maclaurinianae. In: Journal für die reine und angewandte Mathematik. Band 12, 1834, S. 263–272 (Latein, zenodo.org).
  7. W. Gröbner und N. Hofreiter: Integraltafel. Zweiter Teil: Bestimmte Integrale. 5. verb. Auflage, Springer-Verlag, 1973.
  8. John H. Conway, Richard K. Guy: The Book of Numbers. Springer-Verlag, 1996, ISBN 0-387-97993-X, Kap. 4, S. 107–109.
  9. J. M. Borwein, P. B. Borwein, K. Dilcher: Pi, Euler Numbers, and Asymptotic Expansions. AMM, Bd. 96, Nr 8, (Okt. 1989), S. 682.
  10. Henry Wadsworth Gould: Combinatorial identities. Morgantown, W Va, 1972.
  11. K. Reillag, J. Gallier: Complex Algebraic Geometry. CIS 610, Lecture Notes, Fall 2003 – Spring 2004, Chap 3, S. 209–220.

wikipedia, wiki, enzyklopädie, buch, bibliothek, artikel, lesen, kostenlos herunterladen, Informationen über Bernoulli-Zahl, Was ist Bernoulli-Zahl? Was bedeutet Bernoulli-Zahl?